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directions (that is, in the directions towards the closest 
neighbours); therefore, it is not surprising that the three- 
fold faces are usually absent on the surfaces of growing 
quasicrystals. 

The relationship between the icosahedral quasicrystals 
and the CsC1 structure (via A-3 cells) was demonstrated 
above. Now, it is interesting to note that pieces of the 
(110) atomic plane of CsC1 have been suggested by 
Dong, Dubois, Kang & Audier (1992) as the structural 
units for the decagonal phase. Perhaps this is an expla- 
nation for why the icosahedral, decagonal and CsCl-like 
phases have close compositions in many alloys. 

The author is grateful to N.N.  Devnina and E. 
Kuklina for their help in the bibliography search for 
crystal structures. At different stages of this work, 
discussions with M.A.  Fradkin, R.V.  Galiulin, M. 
Kl6man, L.S .  Levitov and H.-R. Trebin were very 
fruitful. The support of l'Universit6 Pierre et Made 
Cm'ie (Pads VI), France, where the final part of the 
work was done, is acknowledged. 
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Abstract 

The classical problem of determining heavy-atom pa- 
rameters in single or multiple isomorphous replacement 
methods is reconsidered in two related papers. This first 
paper systematically examines how to derive a priori 
statistical information concerning heavy atoms and lack 
of isomorphism (LOI). By a priori is meant without any 
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knowledge other than that of the measured intensities 
(and their estimated or's) of a 'native' and 'derivative' 
crystal pair, that is to say before any potential site 
of substitution has been determined. First, both the 
terms ~ n  = )--~1 f~, wherefi is the scattering factor 
of the ith heavy atom and N is the number of sites 
and, simultaneously, the best scale factor between the 
'native' and 'derivative' data are estimated a priori as 
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a function of sin 0/A. It is then shown how to derive a 
quantitative estimate of the respective contributions to 
P'H of 'signal' due to heavy atoms and 'noise' from 
LOI. The actual heavy-atom contribution is obtained 
from estimates of both a global isotropic temperature 
factor and a global absolute occupancy factor. The noise 
contribution is obtained as a 'LOI factor' analogous to 
a Debye-Waller term as shown by Read [Acta Cryst. 
(1990), A46, 900-912; Crystallographic Computing 5 
(1991), edited by D. Moras, A. D. Podjamy & J. C. 
Thierry, pp. 158-167. IUCr/Oxford Univ. Press]. As an 
important consequence, the variation with resolution of 
both the 'lack of closure' and derivative phasing power 
can be estimated. 

1. Notation 

The following notation is used in this paper: 

P(X)  Probability density that X 
lies between X and X + 
dX 

P ( X I Y )  Conditional probability 
density that X lies be- 
tween X and X + dX, Y 
being known 

(X) Expected values of X cal- 
culated with the required 
probability density 
Ensemble average 

~T = Y']~iN~ f2 Sum of the squares of the 
scattering factors of atoms 
of type T [T = P for 
the native, T = H for the 
heavy atom(s), T - P H  
for the derivative, T = 
N for the dummy atoms 
modelling the noise due to 
lack of isomorphism, T = 
H N  for the heavy plus 
dummy atoms] 

~T/T'  : ~ T f Z T  ' 
FT  

Er 
X = 2FpFpH/ZH 
Y =  
Z = (F~ + F~H)/EH 
g~(x)  

I r , ( X )  = exp[-in(~r/2)] 
x&(iX) 

a ( x )  = Xla(X)/Io(X)  

Structure factor corre- 
sponding to the contribu- 
tion of the atoms of type T 
(same meanings as above) 
Modulus of FT 

Bessel function of the first 
kind of the nth order 
Modified Bessel function 
of the nth order 

F(o~,/3; X) 

BN 

BH 

W = r.m.s.(FH)/r.m.s.(~) 

Confluent (or degenerate) 
hypergeometric function 
'LOI factor', analogous to 
a Debye-Waller factor for 
the quantification of the 
contribution from LOI to 
~HN 
'Global' isotropic temper- 
ature factor of the heavy 
atoms 
Qj is the individual abso- 
lute occupancy of the j th 
heavy-atom site (all sup- 
posed to be of the same 
kind) 
Lack of closure 
Phasing power 

2. Introduction 

The most common strategy for solving the phase prob- 
lem in macromolecular crystallography remains that 
of multiple isomorphous replacement. As a first step, 
this method requires the determination, as accurately 
as possible, of the heavy-atom parameters: coordinates, 
occupancies and temperature factors. To achieve this, 
the difference Patterson synthesis is most useful. It was 
first used with the simple differences (F2H -- F~) as 
coefficients at the suggestion of Perutz (1956). Despite 
its simple interpretation, it has a major drawback owing, 
in particular, to a high sensitivity to scaling errors. It 
is well known that the coefficients (FpH -- Fp) 2, the 
squares of the isomorphous differences, are much less 
sensitive to this problem (Rossmann, 1960). These terms 
are intended to represent the F~,  necessary for calcu- 
lating the Patterson function of the heavy atoms alone. 
This is rigorous for most centric reflections (apart from 
experimental errors) but only a crude approximation for 
acentric ones. Furthermore, the seminal hypothesis of 
isomorphism is often violated in practice, which makes 
LOI another (and commonly the major) source of noise. 
In practice, not only the level of substitution (through 
the occupancy and temperature factors of each site), 
but also both the best relative scale factor and the 
level of LOI (through the lack of closure) are estimated 
at the refinement step of the heavy-atom parameters. 
It is commonplace to recall the important correlation 
between the three terms occupancy, temperature factor 
and relative scale factor and, therefore, the inherent 
oscillatory character of their refinement. More subtle 
is the slow drift of the solution, particularly in cases 
of a high level of LOI, owing to the lack of closure 
being taken as a refinable parameter (Bricogne, 1991). 
This paper addresses several questions related to these 
problems from the opposite point of view, namely ob- 
taining information prior to the determination of any site 
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of substitution. This information concerns the relative 
scale factor, the level of substitution, the importance 
of LOI and, consequently, the lack of closure and the 
phasing power. Such results could therefore be used to 
circumvent the factor of circularity introduced by their 
determination at the refinement step. 

included, one correctly obtains 

F~, = D2F 2 + F 2. (3) 

If Fff = Fg holds, and since the D ' s  and Fp's are 
uncorrelated, this leads to 

3. Lack of isomorphism: previous 
results and some comments 

In many instances, where it is not essentially due to 
modification of thermal agitation, LOI may be modelled 
with additional dummy atomic 'dipoles', i.e. with atoms 
occuring in pairs with opposite occupancies. The orien- 
tation of these dipoles can vary from total randomness 
to complete lack of randomness depending on whether 
there is alteration of the molecular structure and/or 
rigid-body movement and/or unit-cell modification. Such 
dipoles have a contribution to ~ n  increasing with reso- 
lution, which is the mark of LOI. Indeed, one can 
easily show that the scattering factor of such a dipole is 
i 27 r f (h )h .u  with i 2 = - 1 ,  f ( h )  the common scattering 
factor of the two atoms for a reflection h and u the 
dipole interatomic vector (this expression is valid for 
small values of lul relative to d = 1/Ihl). m common 
hypothesis on this contribution from LOI is to consider 
it as noise, i.e. that it is unrelated to both the heavy- 
atom and native structure factors. In fact, Read (1990, 
1991) recognized that there exists a component of the 
error due to LOI negatively correlated with the native 
structure factor. That is to say, on average, 

FpH = D F p  + FH + FN, (1) 

where D is a positive factor whose value is 1 at low 
resolution and decreases with resolution and F N is the 
contribution of the true noise due to LOI. An extremely 
simple explanation of this fact is as follows: let us 
consider two hypothetical non-isomorphous crystals of 
the same molecule, the LOI being essentially due to 
some structural changes without significant modification 
for thermal agitation. If Fp and F~, are their respective 
Fourier transforms, one has 

F~, = r p  + F N .  (2) 

But from the Parseval theorem F~  = Fp 2 and, therefore, 
the noise contribution FN cannot be considered as 
uncorrelated with Fp ,  which would lead to F~ = 
F 2 + F2.  * On the contrary, if the cosine term D is 

F~r = (1 - D2)F~ = (1 - D2)Np. (4) 

This result is identical to one obtained in a differ- 
ent manner by Read (1990). Because of the statistical 
independence of FH versus F p  and FN, it is clear 
that replacing F~, and F~, by FpH and FpH, only 
leads to adding F H and F~ to the right-hand sides of, 
respectively, (2) and (3). 

Two other facts emerge from previous work. First 
(Luzzati, 1952; Read, 1990), the term D(s) can be 
understood as a Debye-Waller term, that is to say 

D(s) =exp ( - -BNs  2) (5) 

and, when LOI is due to structural changes, BN may be 
related to the mean square deviation ( A r  2) by 

BN = (8~'2/3)(~r2).  (6) 

Second (Read, 1991), even in the case of LOI requiring a 
set of nonrandom 'atomic dipoles', e.g. for lattice change 
or rigid-body movement, the noise usually follows a 
Gaussian distribution. That, in such situations, the latter 
could be essentially anisotropic is readily dealt with by 
replacing the scalar BN by a tensor as for anisotropic 
agitation or disorder. Interestingly, such a tensor could 
be theoretically determined for simple cases of LOI by 
following the spirit of the paper by Crick & Magdoff 
(1956). In the present paper, we do not consider this 
aspect but rather tackle the practical determination of BN 
as a scalar. The basis of the method for the determination 
of B y  lies in the a priori determination of F~ + F/~ = 
~H-~-Y]N : Y]HN in shells of resolution. This is 
examined in §§ 4 and 5. 

4. Determination of ~ n  

It is shown in the following how acentric and centric 
estimates of ~H can be obtained in shells of resolution 
for an ideal isomorphous case.* The following consider- 
ations are an analytical version of the numerical method 
proposed by Nixon & North (1976). Interestingly, Read 
(1986) showed by numerical tests that it leads to the 
best results when compared with other methods. It is 

* In other words, the noise power, F 2 ,  increases at the expense of 

the original signal power, F g. This interpretation is the only valid one, 
otherwise passing from a perfectly isomorphous crystal pair to a fully 
nonisomorphous pair would never make their mutual correlation vanish. 

* The following results on the determination of EH, the derivative-to- 
native scale factor and the global quantities Q/4 and BH were presented 
at the Crystallographic Computing School held at Bischenberg, France, 
in 1990 (Dumas, 1991). 
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shown in the next section how the influence of LOI can 
be dealt with. 

4.1. Determination of E H from acentric reflections 

The method is based on calculating ((FpH -- Fp) z) 
for any given value of Fp, that is to say 

OO 

((FpH - Fp) 2) = f ( F p .  - Fp)2p(FpHIFp)dFpH. 
o 

(7) 

This quantity* can be calculated by considering for 
P(FpHIFp) the conditional density probability from 
Sim's (1959) paper, 

P(FpH}Fp) = 2 ( F p u / E H ) e x p [ - ( F  2 + F~H)/EH ] 

x I o ( 2 F p F p z / E . ) .  (8) 

Developing the squared difference in (7), one obtains 

((FpH -- Fp) 2} = (FZH) -- 2Fp(FpH) + F 2. (9) 

The two integrations, for (F 2H) and (FpH), respec- 
tively, are detailed in the Appendix and giver 

(F2 . )  = F~ + EH, (10) 

which is equivalent to 

(F~H - F~.) = EH, (11) 

a given shell of resolution with Fp greater than, say, 
the average value of Fp in this range, then E H can be 
approximated by 2(FpH -- Fp) 2 in this shell. This first 
(and well known) approximation, allowing calculation 
of Y for any reflection, can then be used in a cyclic 
procedure to recalculate EH as ( F p H -  Fp)2/T'a(Y) 
[from (13)] until convergence. 

It can be noted that this result is a 'rigorous' derivation 
(as far as the underlying statistical premises hold) replac- 
ing the common approximation E H  -- 2 ( F p H  -- F p )  2. 

4.2. Determination Of EH from centric reflections 

We are still concerned with the average value ((FpH -- 
Fp) 2) for a given value of Fp. The previous statistical 
treatment could be used by replacing the acentric prob- 
ability density by the centric one. It is equally possible 
to consider the different values of (FpH -- Fp) z as a 
function of Fp and FH. First, F/:, and FH can be of 
the same or opposite orientation with a probability of 
1 for each. Then, in the case of the same orientation, 
(FpH - -  Fp) 2 = F~ but, in the case of an opposite 
orientation, ( F p H -  Fp) 2 = F2H if Fp >_ FH and 
(FpH -- Fp) 2 -- (2Fp - FH) 2 if Fp <_ FH. Therefore, 
from the probability density given by Wilson (1949) for 
centric terms, 

P(FH) = (27rEH) -1/2 e x p ( - F 2 / 2 E H ) ,  (15) 

the average value sought can be written as 

since the average is calculated for a fixed value of Fp 
and 

1 1 / 2 F (  1 (FpH) = ~(TrEH) --~, 1 ; - r ) ,  (12) 

1 where F ( -  ~, 1; - Y )  is the confluent hypergeometric 
function and Y is the reduced variable F~/EH. Putting 
everything together, one obtains 

((FpH - F p )  2) = z.ra(Y) (13) 

with 

Fp =1[ ((FpH -- Fp) 2) ~ (F 2} + f F~P(FH)dFH 
o 

+ f (2 fp  - F.)2P(F.)dfi~. 
Fp 

(16) 

These integrals are easily calculated and we eventually 
obtain 

((FpH - fp)2> = 2.r~(Y) (17) 

F~(Y) = 1 + 2Y - (TrY)l/2F(-½, 1 ; - Y ) ,  (14) 

where the index a denotes acentric reflections. The 
function Fa(Y) is plotted in Fig. 1. The resulting curve 
shows the existence of two domains: first 0 _< Y _< 0.91, 
in which the function varies rapidly, and, second, 0.91 
< Y, in which it is nearly constant and goes asymp- 

1 This feature has the following interesting totically to ~. 
consequence: if we consider all acentric reflections in 

* In fact, this quantity should be more precisely denoted ( (FpH-  
Fp)2)Fp, to recall that the average is calculated for a fixed value of 
Fp. However, the suffix Fp has been dropped for the sake of simplicity. 

t Indeed, this result is more a verification than anything new, since it 
can be obtained a priori by using the Parseval theorem. 

/ 
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Fig. 1. variation versus Y of Fa(Y) for acentric terms [(14)] and 
of Fc(Y) for centric terms [(18)]. Fa(Y) tends asymptotically 
towards _1 

2" 
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with 
Fc(Y) -" 1 + {1 - e r f  [(Y/2)I/~]}Y 

- [ ( 2 / T r ) Y e x p ( - Y ) ]  1/2, (18) 

where the index c denotes centric reflections, Y has the 
same meaning as in the previous section and erf denotes 
the error function. The function Fc(Y) is plotted in Fig. 
1. As for acentric terms [(11)], it can be verified that 
((F~H - F~)) = ~H. 

5. Determination of the best 
derivative-to-native scale factor 

5.1. Case without LOI 

This part is presented separately from the previous 
considerations only for the sake of clarity. Indeed, both 
theoretically and practically, determination of EH and 
of the relative scale factor cannot be dissociated. It has 
been seen [(11)] that, for centdc as well as for acentric 
reflections, (F~H-Fp  2 ) = EH. It seems that the simplest 
way of determining EH would be to consider this esti- 
mate. However, in practice, one observes that this often 
leads to a negative value. This fact is understandable 
in terms of insufficiently good scaling of the derivative 
data set versus the native one. This corresponds exactly 
to the problem examined by Rossmann (1960) (see 
Introduction) and to his conclusion that coefficients 

2 2 (F~, n - F j ~ )  are much more sensitive to scaling problems 
than ( F p H -  Fp) 2. As a consequence, one can determine 
the scale factor (either an overall one or per shell 
of resolution) by the imposition of identical values 
of ~H obtained from ( F p H  -- F p )  2 and (F~H -- F 2 ) ,  

respectively. This is achieved in practice by the use of an 
iterative procedure that converges in two or three cycles. 

To test the method, we used synthetic data for which 
the scale factor is perfectly known (equal to 1). The 
results are shown in Table 1 and clearly demonstrate 
its effectiveness. In particular, the difference between 
this and ordinary methods is dramatic in the case of a 
high level of substitution (cf the last line of Table 1). In 
practice, it has been observed that an initial scale factor 
(to multiply the FpH's) obtained by other usual methods 
is most often increased by a few percent. It is worth 
noting that this method is strongly reminiscent of that 
using considerations of the heights of two difference Pat- 
terson origin peaks (Blundell & Johnson, 1976, p. 335). 
It was first used (without any explanations) by Kraut, 
Sieker, High & Freer (1962). Tickle (1991) reconsidered 
it with more details with the usual approximation F 2 = 
2( Fp H -- Fp ): for acentric reflections. 

5.2. An important comment on the exact meaning of 
scaling 

It thus appears that the proposed procedure for scaling 
two data sets amounts to determining the power, i.e. 
~H -- F~,  of the component of the derivative signal 

uncorrelated with the native signal. In fact, with it in 
its more general form, one is led to considering EH as 
the power of some signal, in fact any signal, provided it 
is uncorrelated with the native signal. Whether or not it 
actually originates from heavy atoms is unimportant: it 
could also be mere noise. This may seem secondary but 
reveals itself to be crucial for the understanding of the 
influence of LOI on scaling (see below). 

Another important feature is also worth discussing 
because, at first sight, the theory seems to be incon- 
sistent. Let us consider any theoretical case shown 
in Table 1 from which the correct unit scale factors 
were correctly retrieved. Suppose we simply interchange 
the two data sets, i.e. we treat the native data set as 
the derivative one and vice versa. We also expect to 
obtain unit scale factors, for we implicitly consider that 
native and derivative data sets should remain correctly 
scaled whatever the order in which they are taken into 
consideration. However, the result is contrary to this 
naive assumption and we obtain scale factors greater 
than 1, that is to say the power of the native is increased 
as if it contained the heavy atoms. The explanation of 
this apparent paradox is that the proposed procedure only 
deals with E H, the power of the heavy atoms. Therefore, 
by the Parseval theorem, there is no way to discriminate 
heavy atoms with positive or negative occupancy. Thus, 
there are no inconsistencies, since heavy atoms with 
positive occupancies in the derivative crystal can be 
considered formally as atoms in the native crystal but 
with negative occupancies. 

5.3. How does LOI affect the scaling procedure ? 

The answer to this question is deceptively simple: this 
scaling procedure takes care perfectly of the presence of 
LOI without any other correction! The reason is simply 
that this procedure, as stated above, amounts to deter- 
mining the power of the component of the derivative 
signal uncorrelated with the native signal. Indeed, there 
is a component of LOI that is negatively correlated with 
the native signal, the remaining component being true 
noise (see § 3). Therefore, the scaling procedure will 
determine this true noise component of LOI by correctly 
estimating the term D(s) [(4)] as a contribution to the 
derivative-to-native scale factor. 

It is shown in the next section not only that such 
interpretation is correct but also how it is possible to 'de- 
convolute' the respective contributions from LOI, heavy 
atom(s) and experimental errors to the overall 'noise' 
making the native and derivative signals different. 

5.4. Extension to the scaling of calculated and observed 
structure factors 

It is common in practice to have to scale calculated 
and observed structure factors. The calculated terms 
may come from an atomic model (with errors and/or 
incomplete) or even from a density map after modifica- 
tion (e.g. after solvent flattening). The present method, 
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Table 1. Results of  various test calculations with increasing values of cpH/ p = ~H IE P 

Each line of the table corresponds to a given value of ~OnlV. I;'p's are calculated with 920 light atoms in the asymmetric unit, 
Fpn's are calculated with four additional Au atoms whose occupancies and isotropic temperature factors are Qi and Bi, i = 1, 
4. a = 50, b = 60 and c = 70 A. Space group P212121. The data have been calculated and used up to 3 A resolution. Lines 1 
to 8:Q2 = 0.8Qli~'Q3 = 0.5Q1, Q4 = 0.2QI and Bi = 30/~k 2. Line 9: Qi = 1, Bi = 0 A 2 for i = 1, 4. The results are used 
to assess the accuracy of determination of: 

(1) The scaling procedure (one single scale factor: column 6) in comparison with a standard method from the CCP4 package 
(one scale factor: column 5; and isotropic temperature factor: column 4). In all cases, the correct scale factor is 1 with a null 
temperature factor. It is clearly apparent that the standard method gives increasingly wrong results while the proposed procedure 
gives very satisfactory results at any level of substitution. Indeed, the overall scale factor (scale factor plus temperature factor) 
from the standard procedure can be wrong by 55% at the highest resolution in comparison with the maximum error of 1.8% at 
any resolution for the proposed procedure. 

(2) A global isotropic temperature factor BH for the heavy atom (column 7). The correct values are 30 A 2 from lines 1 to 8 
and 0 A 2 for line 9. 

(3) A global absolute occupancy term Qn for the heavy atom(s) (column 9 to be compared with column 8). 

1 2 3 4 5 6 7 8 9 
K * ~lo, Qn, Qn,* 

Line no. Q1 qon/p Bscale (/~2) Kscale this method Bn* (A) exact estimated 

1 0.3 0.025 0.7 0.999 {1.002 {30.4 { 0.35 1.003 23.9 0.42 0.40 

2 0.4 0.046 1.2 0.996 {1.002 {30.4 { 0.48 1.003 24.7 0.56 0.54 

3 0.5 0.072 1.7 0.992 {1.003 {30.7 { 0.60 1.004 25.9 0.69 0.69 

4 0.6 0.103 2.3 0.987 {1.003 { 30.2 { 0.71 1.004 27.6 0.83 0.85 
{1.003 { 30.4 { 0.84 

, 0 7  0,4  09 0 , 0 0 4  097  l OO 

6 0.8 0.186 3.5 0 .972 {1.0031.004 { 27.329"7 1.11 { 0.951.13 

7 0.9 0.236 4.2 0.961 {1.003 {31.0 {1.09 1.005 26.8 1.25 1.27 

8 1.0 0.289 4.8 0 .948 {1.003 31.2 1.004 { 1.39 {1.21 26.3 1.39 

9 1.0 1.318 27.0 0.961 { 0.9920.982 {8.2  5.4 2.00 {1.81 2.17 

* The upper and lower values correspond to the results obtained with data between 70 and 3 A and between 10 and 3 A, respectively. 

clearly related to the method of Read (1986), can be 
used for such purposes with the native and derivative 
data sets being replaced, respectively, by the calculated 
and experimental data sets. In view of the comments 
made in § 5.2, the effects of both the missing atoms 
(corresponding to E/c) and the error on coordinates 
(corresponding to E n )  are obtained as ZHN by the 
scaling procedure. 

6. A priori estimation of  the level o f  LOI 
and of  global heavy-atom parameters  

6.1. Estimation of  a "LOl factor' and of  a global heavy- 
atom temperature factor 

From the preceding sections, one may state that some 
'observed' quantity Eobs can be determined that is the 

sum of heavy-atom contribution(s) and of various statis- 
tically independent errors of experimental origin, Eexp, 
and owing to LOI, EN. In other words, 

Eobs -- EH + Eexp + EN.  (19) 

One takes care of Y~exp by simply subtracting from 
Eobs in each shell of resolution the average value of 
m[cr2(Fp) + tr2(FpH)] with m = 1 and m = 2 for, 
respectively, centric and acentfic reflections. It was ver- 
ified by a numerical test (not shown) that this correctly 
leads to P,H " '  0 when the Fv's  and FpH's differ only 
by 'experimental '  normal errors. Therefore, for real data, 
one should insist on the importance of a correct estimate 
of the uncertainties of experimental origin. This requires 
not only the correct estimation of a ( I )  at the data 



In real cases, the results are generally, if not al- 
ways, consistent with the refined heavy-atom parameters. 
These results, for both test and real cases, are shown in 
§6.3. 

reduction step but also that a(F) is correctly obtained 
from a(I).* 

In order to separate contributions of both remaining 
terms, E n  and EN, one is led to express them explicitly 
as a function of s = sin 0/A. Although the heavy atoms 
may be too few to allow the safe application of Wilson 
statistics (Wilson, 1942), it is difficult to avoid doing so. 
Therefore, we make the (over)simplifying assumption 

Y]H --- Y]Ho e x p  ( - - 2 B H s 2 ) .  (20) 

Then, from the previous considerations [(4) and (5)], one 
is led for EN to the simple expression 

EN = Ep[1 -- exp (--2BNs2)]. (21) 

The values of EH0, BH and BN (the 'LOI factor') are 
to be determined to fit the variation of Eobs with resolu- 
tion. Practically speaking, Eobs is calculated in shells 
of resolution by considering the acentric and centric 
estimates obtained as described previously, and the three 
unknowns are then determined after a systematic three- 
dimensional search followed by a nonlinear refinement. 
The residual function to minimize is obtained from Eob~ 
and Ecalc [from (19), (20) and (21)] and its gradient and 
Hessian matrix% are analytically determined. The inverse 
of the Hessian matrix also allows the estimation of the 
errors on the obtained values. 

On the one hand, the residual function is well con- 
ditioned because it has a single minimum (at least in 
the examples examined). However, on the other hand, 
this function is extremely flat in one direction around 
this minimum owing to important correlation of the 
three parameters. There is, in particular, a serious danger 
of overfitting or underfitting the obtained set of E H 
values owing to the difficulty of correctly estimating a 
confidence interval for each of them and, consequently, 
a proper weighting scheme. Clearly, some progress is 
necessary in this area. Related to this weighting prob- 
lem is the extreme simplification of invoking Wilson 
statistics for the contribution of heavy atom(s). High- 
symmetry space groups could be more favourable than 
low-symmetry space goups in this respect (Shmueli 
& Weiss, 1987). Despite this obvious limitation, the 
proposed method gives rather satisfactory results in test 
cases with different levels of LOI. 

* As mentioned by Tickle (1991), there is often miscalculation of 
a(F) from a(1) in many data-processing programs for low values of 
F .  A more accurate value of it for the limiting case F = 0 seems to 
be a(F) = [a(1)/21/2] 1/2 instead of or(F) = [a(I)] 1/2 as stated by 
Tickle (in any case, the two values differ only by 16%). This results 
from considering a Gaussian probability density truncated to zero for 
negative values of I and renormalized for taking care of this fact. This 
yields a somewhat complex expression, valid for any situation ranging 
from I /a ( I )  = 0 to l / a ( I )  = oo, for which one retrieves the usual 
approximation a ( F )  = a(l) /2F.  

t The Hessian matrix is evaluated by keeping only the product of first 
derivatives for the cross terms (Press, Flannery, Teukolsky & Vetterling, 
1986). 

6.2. Determination of a global absolute occupancy factor 
for the heavy atom(s) 

The term EH0 [(20)] obtained from the previous study 
cannot yet be taken as being on an absolute scale. 
However, one can easily derive an approximate value 
of the global quantity QH = (E~-si  I Q~)l/2, where Qj 
is the absolute occupancy of the jthsite.  This is achieved 
by the following Wilson-like analysis: 

2 2 F~IFh = Z p l ~  
_ f 2  2 2 - y~ U~ f ~s ds /Qn f  f~s2ds, 

i 
(22) 

Q~ 

with Ni being the number of atoms of the ith type in the 
native molecule. The integrals of the third member can 
be calculated by considering the standard representation 
of all atomic structure factors in terms of a sum of 
Gaussians (International Tables for X-ray Crystallog- 
raphy, 1974), and QH is thus obtained. In fact, their 
exact calculation requires the knowledge of the overall 
temperature-factor values for the macromolecule, Bp, 
and the heavy atoms, BH. BH is known from the 
previous study. However, Bp cannot be obtained from 
a Wilson plot if experimental data do not extend much 
beyond 3 ]k resolution. In such a case, one must rely on a 
guess value. Theoretically, the previous expressions are 
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I I I i I ! 

0.05 0.10 0.15 0.20 0.25 0.30 

(sin 6/A)m,~ 

Fig. 2. Evolution of the theoretically determined value of QH versus 
the upper limit of resolution used in calculations for a test case in 
P212121. For each point, all low-resolution data have been used. The 
theoretical F2H terms have been calculated with one heavy atom 
with QH = 1 and BH = 0 A 2, without any influence of LOI. The 
existence of a maximum, instead of a plateau, at QH = 1 is due to 
the slight imprecision in the determination of BH, whose importance 
increases with resolution. 
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Table 2. Comparison for test cases with LOI of the estimated values of QH, BH (A 2) and BN (A 2) with their 
exact values 

Space group P41212. Native structure factors calculated with the coordinates of the bleomycin resistance protein, derivative structure 
factors calculated with the six sites of its europium derivative with the following absolute occupancies and temperature factors Qi, 
Bi: Q1 = 1, BI = 55A2; Q2 = 0.39,/32 = 90A2; Qs = 0.31, B2 = 50A2; Q4 = 0.28,/34 = 50A2; Q5 = 0.20, B5 = 
25A2; Q6 = 0.1, B6 = 40A 2. These values allow us to calculate the theoretical values Qn = 1.15 and Bn = 55A 2 to 
minimize the squared residual difference between ~']~iQ~s 2 exp (-2Bis 2) and Q2ns2 exp (-2Bns2), in reasonable agreement 
with those obtained when correcting for the effect of LOI. 

Low LOL LOI modelled by the movement of one loop (ten residues). The resulting overall r.m.s, deviation is <Ar2) 1/2 = 0.15 A, 
yielding a theoretical value of BN = 0.6 A 2 from (6), in excellent agreement with the value found. 

Medium LOI. Same changes as above plus a rigid-body translation of -0.10, 0.05, -0.15 A along the axes and a rotation 
of 0.15 ° about an arbitrary axis. The resulting overall r.m.s, deviation is (Ar2) 1/2 = 0.294A yielding a theoretical value of 
BN = 2.3 A 2 from (6), in excellent agreement with the value found. 

High LOL Same changes as above plus unit-cell modification from a = b = 48.4, c = 111.5 A to a = b = 48.6, c = 110.5 A. The 
resulting value of (Ar  2) has been estimated simply by adding to (0.294) 2 the contributions (AXe) = (6a~)2f2 z~dzi = (6ai)2/3 
from the three mutually orthogonal directions i =1, 3. This makes the simplifying assumption of a constant density of atoms 
within the unit cell. The result is (Ar  2) ---- (0.294) 2 + 2 × 0.04/3 + 1/3 = 0.446 A 2, yielding a theoretical value of BN = 
11.7 A 2 from (6), in good agreement with the value found. 

BH, QH, BN, 
LOI BH* BH (e.s.d.) theoretical QH* QH theoretical BN (e.s.d.) theoretical 

Low 44 77 (6) 55 1.91 1.16 1.15 0.55 (12) 0.6 
Medium 24 60 (12) 55 1.92 1.16 1.15 2.2 (5) 2.3 

High 10 85 (37) 55 4.32 1.42 1.15 15.8 (22) 11.7 

* Values obtained without correction for LOI. 

valid when considering infinitely many Fourier coeffi- 
cients. Practically, only an approximate value of QH 
is obtained. Test calculations show that QH tends to 
be underestimated until the resolution is less than 2.5 A 
(Fig. 2), but also that QH tends to be overestimated if 
low-resolution data are ignored (not shown). It turns out 
that these two effects cancel almost exactly for data lying 
in the usual resolution range of 10-4.0 A. Interestingly, 
this low limit of 10 A is also quite convenient for the 
elimination of the deleterious effects of the disordered 
solvent. 

6.3. Results concerning the determination of BH, QH 
and BN 

Results from the two previous sections concern both test 
and real cases. A first test case has been performed to 
assess the results without LOI but at varying levels of 
substitution (Table 1, columns 7 and 9). It clearly gives a 
very satisfying result. A second test has been performed 
to assess our ability to differentiate between true signal 
and noise from LOI. For that, three sets of data were 
calculated with, respectively, low, medium and high 
LOI as described in the legend of Table 2. Furthermore, 
'experimental '  errors were artificially added in order to 
simulate real data as realistically as possible. With that 
aim, an attempt has been made to mimic the behaviour 
of errors versus intensity and resolution as observed for 
a real case, namely for the experimental data from the 
bleomycin resistance protein (BRP) (Dumas, Bergdoll, 
Cagnon & Masson, 1994). The results are given in 
Table 2. They show that both BH and QH are correctly 

recovered when the LOI contribution has been estimated 
and removed. One just notices a tendency to obtain 
too high a value for BH. This may not be general 
but just the result of this particular case. An extremely 
interesting result concerns the remarkable quality of the 
values obtained for BN, allowing the level of LOI to be 
quantified. This ~uality can be assessed by comparing 
the value of ( A t  > obtained from (6) with that obtained 
directly from the known modification of the coordinates 
for modelling LOI. 

Results using real cases are given in Table 3. They 
concern several structures (RNA and proteins) solved in 
our laboratory. There is obviously no way to compare 
the obtained value for BN with its exact counterpart. 
However, the highest values obtained for BN concern 
ASPA(Au) and ATIII(Pt). This is in agreement with the 
low phasing power of these derivatives. More specifi- 
cally, for ASPA(Au), this agrees with the LOI induced 
on soaking, which was characterized after refinement 
(Westhof, Dumas & Moras, 1985; Dumas, 1986). 

7. Consequence for the a pr ior i  estimation of 
the lack of closure and of the phasing power 

The previous results have an important practical conse- 
quence. Indeed, knowledge of the terms EH, Eexp and 
EN allows the calculation of a very early estimate of the 
' lack of closure' and of the signal-to-noise ratio, usually 
referred to as the 'phasing power' .  The latter can be 
defined as 

W -- (F~)1/2/(-~) 1/2, (23) 
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Table 3. Results for  real cases 

Determination of the influence of LOI with BN (A =) and comparison of the global temperature factor BH with the calculated values 
BH~c (A 2) from the refined values of both occupancy (Qi) and temperature factor (Bi) for each site i, as explained in the legend of 
Table 2. ALD: aldose reductase (Rondeau et al., 1987). ASPA: yeast aspartic tRNA (Comarmond, Gieg6, Thierry & Moras, 1986). 
ATRI: anti-thrombin III (Samama, Delarue, Mourey, Choay & Moras, 1989). BRP: bleomycin resistance protein (Dumas et al., 
1994). BH~e~ for ASPA(Au) was not available since one site had its temperature factor arbitrarily blocked at 100 A 2 (Comarmond 
et al., 1986). However, the correct value is certainly in better agreement with the value of 90 A 2 obtained after consideration of the 
influence of LOI than with the null value obtained without consideration of the influence of LOI. Finally, the important disagreement 
between the values BH = 145 flk 2 and BH,ac = 58/~2 for BRP(Eu) has no obvious explanation. 

Resolution 
Crystal Space group range (A) BH* (e.s.d.) BH (e.s.d.) BHc~c BN (e.s.d.) 

ALD (Hg) P41212 10-3.5 22 (2) 37 (4) 29 0.48 (20) 
ASPA (Gd) C2221 12-3.3 37 (4) 55 (15) 45 0.45 (50) 
ASPA (Au) C2221 12-4.0 0 (9) 90 (65) 9 1.4 (5) 
ATIII (Pt) P432~2 12-5.0 122 (11) 193 (26) 157 2.1 (7) 
BRP (Eu) P4t212 10-3.5 37 (7) 145 (14) 58 0.40 (7) 
BRP (Hg) P4~212 I0-3.3 29 (2.5) 33 (4) 28 0.040 (25) 

* Values obtained without consideration of the influence of LOI. These are in excellent agreement with the calculated ones when B N 
is close to zero. 

with e being the so-called lack of closure. Its r.m.s, is 
given by 

= (Z xp + zN) (24) 

and the phasing power W (s), as a function of resolution, 
thus reads, from (20) and (21), 

w(s) = z 21(Zoxp + zN) 
= E l / 2  Ho exp ( - -BHs 2) 

X {~]exp + gp[1 -- exp (--2BNs2)]} -1/2. (25) 

We thus obtain explicit analytical expressions for the 
dependence of lack of closure and phasing power on 
resolution. 

These results have been checked with test data in 
order to obtain exact values of both (72) 1/2 and W for 
the comparison (Fig. 3). They are extremely encouraging 
since the lowering of the phasing power with increasing 
LOI at a given resolution and with increasing resolution 
at a given level of LOI is rather well recovered. It 
is remarkable too that g n  is well obtained, in the 
whole resolution range, for all levels of LOI. Less 
satisfactory are the results at low resolution, for low 
and medium LOI, on the lack of closure and thus also 
on the phasing power. However, for high LOI, the 
agreement is remarkable over the whole resolution range. 
Furthermore, two points should be noted. Firstly, the 
quality of the P,H estimate is an a posteriori justification 
of the use of Wilson statistics (even though it must 
be kept in mind that other cases could give much less 
satisfactory results). Secondly, the relative importance 
of the lack of closure, from high to low LOI, is very 
well appreciated and the agreement is greatest when the 
knowledge of this term is of most practical importance, 
namely for high LOI. Therefore, the lack of closure, 
up to now only estimated at the refinement step of the 

heavy-atom parameters, can now be obtained prior to 
the determination of any site of substitution. It will 
thus be possible to use it as a fixed quantity for a 
proper weighting of such refinement. This is thus one 
possible solution to the weighting problem as explained 
by Bricogne (1991). These considerations await further 
practical tests. 

We discuss here only one example of potentially high 
practical importance. This method, when used on the 
mercury derivative of the BRP (see Table 3), gives a 
nearly null value for BN (thus for the level of LOI) 
and, consequently, a very high value of the theoretical 
phasing power as given by (25). If this result is valid, 
the discrepancy between the high theoretical and much 
lower observed values of the phasing power W ( s )  must 
be interpreted as due to defects in the heavy-atom model. 
In particular, equation (24) for the r.m.s of the lack of 
closure must be modified to 

(~-'~)1/2 .._ (~]exp + ~]N "a t- 0~]H)  1/2, (26)  

where 0 represents the fraction of the heavy-atom power 
incorrectly accounted for by the present model. It should 
be kept in mind that 0 may correspond to either a missing 
or an excess fraction. This 0 value thus appears as 
a potential quantitative criterion to decide whether or 
not continued improvement of the heavy-atom model is 
justified. In the most general situation, this is a function 
not only of the resolution 2s = ]hi but of h as a vector. 
If we consider only the radial dependence, O(s) can be 
obtained from (24), (25) and (26) as 

O(s) = [1/W2obs(S)] - [1/Wt2heo(S)]. (27) 

Clearly, only significant discrepancies between observed 
and theoretical phasing power should be considered for 
this test. It is instructive to grasp the influence of 0 on 
Wobs. From (27), one immediately obtains 

Wobs = Wtheo/(1 + OW:heo) 1/2 (28) 
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In the particular case of the BRP mercury derivative, the 
values Wobs ~- 2.9 and Wtheo --~ 10 were obtained at 10 A. 
resolution. From the previous equations, a value of 0 as 
low as 11% is sufficient to explain the difference. In this 
particular case, where the heavy atom was not present 
as a mere cation but was complexed by an organic 
molecule (p-chloromercuribenzenesulfonate, PCMBS), 
it may be that much of the 0 value could be accounted 
for by the light atoms ignored in the heavy-atom model. 
Incidentally, a minor peak from a residual map, 5.5 A 
from the major site, was not interpreted as a minor site 
but as the sulfonate moiety of the PCMBS molecule and 
modelled by a single S atom. Therefore, the light atoms 
ignored are the three O atoms of the sulfonate moiety 
and the six C atoms of the aromatic ring. Interestingly, 
these missing atoms yield the estimate 0 _~ 5%, whose 
magnitude fits well with the upper value of 11%. 

More work is necessary to fully assess these consid- 
erations. This could be done by obtaining all minor sites 
of the BRP mercury derivative (if any) and refining all 
parameters by refining the whole structure [protein plus 
the bound PCMBS molecule(s)] against the derivative 
data. There is no doubt that such a heavy-atom model 
would be ideal, since it is unattainable in practice when 

solving a structure, otherwise the multiple-isomorphous- 
replacement phases would directly correspond to the 
best phases. Clearly, the estimate of the ideal 'phasing 
power' obtained from this ideal heavy-atom model will 
inevitably be higher than the phasing power actually 
obtained at the solution step. The test would therefore 
amount to verification that this higher value is close 
to the theoretical one obtained a priori .  This should 
obviously hold in the whole resolution range to be 
significant, not only at a given resolution. Paper II 
(Dumas, 1994) examines the quantitative relationship 
between the phasing power and the figure of merit 
quantifying the quality of the phase estimate. 

8. Concluding remarks 

A statistical study of the heavy-atom problem has been 
performed. This has permitted the acquisition of a great 
deal of information with no other knowledge than that 
of the two experimental sets of measured intensities (and 
their a 's)  from a native and derivative crystal pair. These 
concern: 

(1) The definition of an efficient criterion for the 
scaling of derivative to native data. The latter amounts to 
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evaluating the power of the component of the derivative 
signal uncorrelated with the native signal. This power 
not only corresponds to E H, the genuine power of the 
heavy-atom signal, but to its sum with any other sources 
of variance between native and derivative signals. In 
particular, when LOI affects the derivative signal, this 
criterion determines correctly the part of the LOI signal 
that is negatively correlated with the native signal from 
its true noise component. 

(2) An a priori estimation of the level of substitution 
by the calculation of global absolute occupancy and 
thermal parameters for the heavy atom(s). 

(3) An a priori estimation of the influence of the noise 
due to LOI in terms of a 'LOI factor' analogous to a 
Debye-Waller coefficient. As an important consequence, 
one obtains a quantitative estimate of the dependence 
versus resolution of the signal-to-noise ratio, i.e. an early 
indication of the lack of closure and of the phasing 
power. Several theoretical results were carefully tested. 
They concern the scaling procedure and the determina- 
tion of the level of substitution and of LOI. However, 
the results, of potentially great practical importance for 
heavy-atom-parameter refinement, require more work to 
be assessed. 

The present considerations have been explicitly used 
to write a Fortran program, LOCHVAT. It is fully com- 
patible with the CCP4 package and is available on 
request. 
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Urzhumtsev for a careful reading of the manuscript and 
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constructive remarks of one referee. 

APPENDIX 
Calculation of (FZeu) and (Fell) 

All properties of the Bessel functions used below can 
be found in any textbook on the topic (for example 
Nikiforov & Ouvarov, 1976). 

Calculation of (F~ H) 

By definition, 

with a = EH/4F 2. By using the series expansion 
of Io(X) and inverting the order of summation and 
integration (by virtue of the absolute convergence of the 
resulting series), one obtains 

(F2pH) -- (Ea H/8F~,) exp ( - F  2/EH) 
O 0  

x E[1/4k(k!) 21 
0 

O0 

X f X  2(k+11+1 exp ( -aX2)dX.  
0 

(31) 

The integral appearing in the infinite series is equal to 
(k + 1)!/2a k+2 (Gradshteyn & Ryzhik, 1980, p. 337), 
which gives 

OO (X) 

Y~[1/4k(k!)2]fx2(k+l)+l exp ( - a X 2 ) d X  
0 0 

OO 

= (1/2a2)y~[(k + 1)/k!](1/4a) k. 
0 

(32) 

The series obtained can be explicitly summed by con- 
sidering the function 

O~ 

f(z) = z exp z = E zk+l /k ! ,  (33) 
0 

whose derivative leads to the sought-after result with 
z = 1/4a: 

OO 

f '(z) = (z + 1) expz = ~--~[(k + 1)/k!]z k 
0 

(34) 

and the result given in (10) is obtained after a few 
manipulations. 

Calculation of ( Fp H) 

Analogously to the previous case, one is led to 

(FpH) = (E~/2F~)exp( -F2 /EH) 
O 0  

x f X 2 exp (-aX2)Io(X)dX.  
0 

(35) 

Instead of expanding Io(x), it is preferable to replace it 
by Jo(iX), with i 2 = - 1  and Jo(z) being the Bessel 
function of the first kind of order 0. This leads to 
(Nikiforov & Ouvarov, 1976, p. 235) 

O~ 

(F~H) = f F~HP(Fr, H)dFpH (29) 
0 

(FgH) = (E~ /SF4)exp( -Fg /Eu)  
O 0  

x f X  3 exp(-aX2)Io(X)dX,  (30) 
0 

f X 2 exp ( -aX2)Jo( iX)dX 
0 

' 1 /4a) ,  = (Tr/16a3) 1/2 exp (1/4a)F(-~,  1 ; -  

(36) 

F(-½,1;-1/4 ,a)  being the confluent hypergeometric 
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function. Finally, one obtains 

1 (TrY]~H)l/2]5;,( 1 1" - Y )  (37)  (Fp~) = 7 , - - t - 7 '  ' ' 

which is the result given in (12) with Y = 1/4a = 
F~/EH. 
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Abstract 

A preceding paper reported how to obtain a priori 
quantitative information on the lack of isomorphism 
(LOI), considered as noise corrupting the heavy-atom 
signal in a derivative data set. This related paper initially 
examines how additional a priori information can be 
drawn from the knowledge of the level of LOI. First, 
a corrected estimate of the coefficients necessary for a 
difference Patterson synthesis is derived. An estimate 
of their accuracy is also obtained. Then, individual and, 
independently, shell-averaged figures of merit that can be 
expressed in terms of the phasing power obtained in the 
preceding paper are determined. These afford an early 
estimate of the probable phase error on the heavy-atom 
structure factor. In a second and independent part of the 
paper, a correlation/translation function is proposed for 
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the localization of the heavy-atom site(s). The results, 
bearing on both test and real cases, show that this method 
can be helpful in many situations. 

1. Introduction 

In a preceding paper (Dumas, 1994), from now on 
referred to as I, it was shown that a great deal of 
information can be obtained about the LOI corrupting 
a derivative data set before any heavy-atom sites are 
determined. This second paper is first devoted to drawing 
useful consequences from this knowledge, with regard 
first to re-estimating the best coefficients for a differ- 
ence Patterson synthesis. All notation used in the paper 
is consistent with that used in I or is defined when 
necessary. 
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